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ABSTRACT

A new approach to the verification of timing constraints on large digital systems
has been developed. The associated algorithm is computationally efficient, and provides
early and continuous feedback about the timing aspects of synchronous sequential
circuits as they are designed. It also provides means for conveniently verifying the
design section-by-section for designs which are too large to examine as a unit.

This approach is new in that it uses a "stable value” to represent signals in the
large ma jority of instances in which it is unnecessary to know whether the signals are
true or false in order to examine satisfaction of the timing constraints. For the
remaining instances, it represents the full value behavior of signals, allowing it to
evaluate compliance with the remaining timing constraints. This use of the “stable
value” greatly reduces the number of states through which a digital system needs to be
taken in the process of verifying its timing constraints, which in turn greatly reduces the
amount of computing effort required, relative to that needed to verify the timing
constraints via more traditional logic simulation. Not needing to know the values of
most signalsalso greatly reduces the size of the data base needed to drive the verification
process, relative to that required in doing logic simulation. Both of these savings are of
exponential order. This approach thus makes feasible for the first time the exhaustive
examination of complex digital circuits for satisfaction of timing constraints.

A system has been implemented using this approach which takes a digital logic
design specified in the SCALD Hardware Description Language, and verifies all of the
timing constraints specified within it. This system has been used in the design of a very
high performance central processing unit, the S-1 Mark IIA processor. The use of the
Timing Verifier allowed timing errors to be identified early in the design process, while
it was still easy to correct them. Such timely error elimination has permitted the design
to be completed more rapidly, and has also supported the creation of a design which will
perform more rapidly without timing errors, when it is implemented in hardware.

KEYWORDS: Design verification, Timing constraints, Digital systems. Logic
simulation, Hierarchical design
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Chapter I

INTRODUCTION

L1 PURPOSE OF THIS INVESTIGATION

The components comprising a digital system have a range of switching times
associated with them. If the voltage at one end of a wire is changed, then the voltage at
the other end of the wire will change after some delay, which is partly determined by the
transmission line characteristics of the wire and its length. If the input of a gate or other
circuit is changed, there is a delay time which must elapse before its output can be
guaranteed to have the value corresponding to its new input value. Because of

variations in the construction of these components, these delay times vary from one

component to the next.



In order that a digital system perform correctly, a designer must take into account
the possible propagation delays associated with each of the elements making up the
system. If a path through a digital system has either too long or too short a delay
associated with it, then the value of the circuit may be wrong at a critical point in space
and time, causing the circuit to yield an incorrect result. This is called a timing error.
Digital logic as it is currently implemented is intrinsically susceptible to such errors, and
their complete elimination from all portions of a digital logic system is essential to
guarantee that the logic will perform reliably and reproducibly under all variations in
data and programs. This thesis addresses the early and efficient detection of these
timing errors, so that digital logic designers can henceforth frequently check their designs
for these errors as the design proceeds, thereby finding timing errors before the design
proceeds too far and the errors become difficult to correct. Indeed, for complicated logic

circuits, the ideas developed in this thesis makes exhaustive timing verification feasible

for the first time.

A system which uses these ideas has been implemented and is called the SCALD
Timing Verifier. The Timing Verifier is a part of the SCALD (Structured
Computer-Aided Logic Design) system [Mc78a, Mc78b, Sp78, Sp79] SCALD is a
complete computer-aided design automation environment which processes a
graphics-based, hierarchical description of a digital logic design, generating a complete
set of low-level documentation which includes that necessary to implement it in

hardware.

The timing verification approach developed here operates on synchronous
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sequential systems. It performs a complete timing constraint verification based on the
minimum and maximum propagation delays of the circuit components, their set-up and

hold times, minimum pulse width constraints, and interconnection delays.

One of the principal features of this approach is its ability to verify designs by
modules, where a module is a logical section of a design. All of the signals going
between modules must have user-specified assertions on them stating when they can
change, and when they are stable. This ability to verify designs by modules permits
much larger designs to be verified than would otherwise be possible because of
limitations on the amount of memory available. It is also convenient for the verification
of designs being done by a group of designers, to allow each designer to verify the

timing constraints within his section of the design, independently of the rest of the

design.

The utilization of user-specified timing assertions on not-yet-generated signals
allows fhe design to be checked as it progresses, even on a day-by-day basis. This is
particularly important in that it allows timing errors to be corrected before they have a
chance to propagate their effects throughout the design, or to cause ma jor changes to be
made late in the design. It also supports formation of an accurate estimate of the cycle

time of a digital system before its design is completed.



1.2 TYPES OF DIGITAL SYSTEMS

Digital logic systems can be classified into the following different types:
combinational systems, synchronous sequential systems, or asynchronous sequential
systems. The following sections will define these different types of systems, and will

discuss the types of timing errors that occur in them.

1.2.1 Combinational Systems

Digital systems whose outputs are only a function of the current values of the
inputs are called combinational systems [Kr67, Mc62, Ob70, Un69]. These systems have
no internal state, and tend to be fairly simple. They consist of some number of levels of

gates and inverters connected together with no feedback paths.

The main timing parameters of interest for combinational systems are the
minimum and maximum delay through the logic from each of the inputs to each of the
outputs. These are the timing parameters normally given by the manufacturer for an

integrated circuit which consists of a combinational network of gates.
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The calculation of the minimum propagation delay from any one input to any
output is fairly simple. The delay along each of the paths from the input to the output
of interest is calculated by summing up the minimum delay of each of the elements along
the path, and then the minimum delay is given by the shortest delay path. The
maximum propagation delay is calculated in the same way, except that the maximum

delay of each element is used, and then the longest delay path determines the maximum

propagation delay.

1.2.2 Synchronous Sequential Systems

A digital system is sequential if it stores information concerning its past input
states. A synchronous sequential system [Kr67, Mc62, Ob70, Un69] is one in which the
stored internal state changes only at times determined by a central clock. The internal
state is either stored in registers or latches, but is never stored by just creating feedback
paths within the logic. In fact, every feedback path must contain one or more clocked

registers or latches. Figure 1-1 shows a block diagram of a synchronous sequential

system.

A synchronous sequential system must have one central clock. All of the clock
signals used in the design must then be generated from this central clock. The reason

for having only one clock is so that the entire network uses a common standard for



determining when to change the stored state. If multiple clocks are used, then a section
of the logic which uses one clock cannot be certain that signals geherated from a section
which uses another clock will be stable at a particular time within its clock period, even
if all relevant timing properties of the two sections are known. This problem of
communicating between two synchronous systems is the classical synchronization problem

[Li66, Co69, Ch72, Hu5).

AV

COMBINATIONAL
LOGIC

REGISTER

CLOCK

Figure -1

A synchronous sequential system
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An asynchronous sequential system

The following example demonstrates the operation of a simple asynchronous
sequential circuit. Figure 1-3 shbws a set-reset type latch constructed out of two NOR
gates. Normally both the "SET" and "RESET" inputs are false. If the "SET" input goes
true, then the "A” output will go false, which in turn will cause the "B” output to go true.

With the "B” output true, the "A" output will stay faise even if the "SET" input is made



1.2.3 Asynchronous Sequential Systems

Figure 1-2 shows a block diagram of an asynchronous sequential system.
Asynchronous sequential systems store internal state, like synchronous sequential systems,
but are not required to have a central clock to control when the stored internal state can
change [Kr67, Mc62, Ob70, Un69). Both synchronous sequential systems and

combinational systems are special cases of asynchronous sequential systems.

Asynchronous sequential systems can either use clocked registers and latches to
hold the internal state, or they can store state information by having feedback paths
within the logic network which contain some delay in them. The delay is necessary so
that when an input changes, the new outputs are a function of the old output values (and
the new inputs), and not of the new outputs. The inertial-delay elements shown in the
feedback paths in Figure 1-2 also filter out small pulses which may occur in the output
from the combinatipnal logic elements. This filtering is necessary if the combinational
logic contains any Agzards. (A hazard occurs when a signal goes to the wrong value for

a short period of time, because of a difference in delay between different paths through

the combinational logic.)



false again. In this way, the latch has stored the information that the "SET" input has
been true. The "RESET" input can be used to clear the output of the latch in a similar
fashion. The delay in the feedback path is provided by the intrinsic internal delay of

the gates which constitute the circuit.

Determining when one signal is changing in relation to another signal in
asynchronous sequential circuits is much more difficult than in synchronous sequential
circuits, because there is no central clock determining when signals can be changed.
Instead, there are numerous delays and feedback paths within the network controlling
the timing of the circuit. Verifying that there are no timing errors in an asynchronous
sequential circuit is therefore fundamentally more difficult than doing so for

synchronous sequential circuits.



RESET

Figure 1-3

A set-reset fatch
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1.2.4 Types of Systemns Addressed by this Thesis

The timing verification approach developed in this thesis is designed to pperate
on combinational and synchronous sequential circuits. These are the dominant types of
circuits used in large digital systems at the present time. In systems which contain a
mixture of circuit types, this approach may be used to verify correct timing behavior of
the synchronous and combinational parts, ignoring the rest of the design. Analysis of

the timing of asynchronous circuits requires full functional verification, which is

beyound the scope of this thesis.

1.3 TYPES OF TIMING ERRORS MADE BY DESICNERS

Within synchronous sequential digital systems, there are a number of different
levels at which timing errors may occur. These can be resolved into three main levels:
system-level timing errors which occur over multiple clock cycles, logic-level timing errors
which occur within a clock cycle, and circuit-level timing errors which occur within a

gate or storage element. The next three sections will treat each type of error in detail.



1.3.1 System-Level Timing Errors

On the system level, timing errors may exist in both the software running on the
system, in the microcode and in the hardware. System-level timing errors are those types

of errors which occur between two units interacting over multiple clock cycles.

Consider the timing errors which can occur in software. The operating system
might try and read some data being retrieved from a disk storage unit before the unit’s
controller has finished writing it into the CPU’s memory. This results in the wrong
value being read. Another example is an interrupt occurring during a critical sequence
of code. This could result in an input operation changing a variable which the code

.‘ sequence depended on not being changed at that time.

In the microcode or hardware, there can be errors in the communications protocol
used between two different units. Consider a CPU talking to a controller on a bus. The.
definition of the bus might require that the CPU wait until an acknowledgment signal is
generated before it is allowed to proceed after a particular operation. If there is a design
error in the CPU such that it waits a certain amount of time, instead of waiting for the
acknowledgment signal, an error would occur if the acknowledgment signal arrived later

than expected.



Verification of these system-level timing errors is beyond the scope of this thesis.
The currently best known way of addressing these problems is through the use of logic

or system level simulation.

1.3.2 Logic-Level Timing Errors

On the logic level, there are a number of types of timing errors which may occur.
These include failure to meet the set-up, hold, or minimum pulse width time
requirements for a register, latch, memory, or other complex function. These generally
occur because the delay of the combinational logic between two clocked elements is too
long or too short. In addition, problems due to hazards on clock signals may arise,
resulting in a register or latch being clocked unexpectedly. This could possibility cause
data to be lost. The actual delays of the interconnections between the components are
also a significant consideration, accounting for as much as half the delay in current large

systems.

Figure 1-4 shows an edge-triggered D-type register, along with the definition of
the propagation delay, set-up time, hold time, and minimum puise width constraints.
When the clock input of this register goes from a zero to a one, the register will change
its output from its current value to the value given by its data input, after its

propagation delay has elapsed. If the data input is changing during the rising edge of
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the clock, then the value to which the register will be set is indeterminate. In order to
insure that the register is set to the proper value, the data input must be stable for a
period before the rising edge of the clock (the set-up time), and it must remain stable for
a period after the rising edge of the clock (tAe kold time)) In addition to set-up and hold
time constraints, the register may not operate properly unless the clock pulse is at least as

wide as the minimum clock pulse width specified for it.

-14-
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Example of a D-Type register

Figure 1-5 shows an edge-triggered register being clocked by the output of a gate

which has a hazard on it. The intent of this circuit is to conditionally clock the register



based on the value of the signal “ENABLE”, but because of too much delay in the
generation of “ENABLE”, the register occasionally gets clocked when it is not supposed
to. In Figure 1-5, the signal "CLOCK?” goes from a zero to a one 20 nsec into the cycle,
and back to a zero 30 nsec into the cycle. The signal “ENABLE"” wants to be a zero, in
order to inhibit the register from being clocked, but doesn'’t get to a zero until 25 nsec
into the cycle. As a result, the signal “‘REG CLOCK?" is a short, 5 nsec pulse, which may
clock the register, rather than staying zero. This example is typical of a whole class of
common timing errors where control signals are generated too late to reliably control the
clocking of a register, latch, or memory element. The result can be a circuit that usually
works, but will occasionally fail, e.g., when a clock pulse wide enough to cause the register
to clock gets through when it is not supposed to. This type of intermittent timing error
can be particularly hard to find after the system is constructed, and can result in systems

that operate unreliably, but are nearly incapable of being fixed.

A significant consideration in the design of large digital systems arises from the
various delays in the interconnections between the logic elements. For short
interconnections, a timing performance analysis needs to look at the length, capacitance
and inductance of each interconnection in order to determine both the minimum and
maximum possible delay. For interconnections having propagation times longer than
roughly a quarter period of the voltage wave, a detailed analysis of the transmission line
characteristics is required to determine the minimum and maximum possible delay, and
whether there are any voltage wave reflections from impedance variations in the signal
run of sufficient magnitude to cause extra clock transitions to occur, possibly causing a

register to get clocked more times than is intended. Runs with such reflections on them

-16-



can be flagged by the transmission line simulator, allowing the timing verification

process to flag them if they affect edge-sensitive inputs.

D-TyPE
REGISTER
DATA INPUT 1 T DRTR OUTPUT
fos
VAN
CLOCK
REG CLOCK
ENGBLE
Q.OCK
20 NSEC 3 NSEC
ENFBLE
e ——
5 NSEC
REG CLOCK
20 NSEC % NSEC
Figure 1-5

Example of a hazard on a clock input to a register
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1.3.8 Circuit-Level Timing Errors

The circuit-level timing errors are those occurring within the design of the

low-level circuits which implement the basic gate and storage elements.

The analysis of the timing properties of the basic circuits used to implement the
gates and storage elements requires consideration of the analog characteristics of the
transistors and other devices used to construct them. Timing is determined by the
current-driving capability of the transistors, their frequency characteristics and the
amount of line and load capacitance that they are required to drive. Timing analysis
must determine the minimum and maximum propagation delays from the inputs to the
outputs. For registers, latches, and memory elements, values must be determined for the

set-up, hold, and minimum pulse width constraints which will insure reliable operation

of the circuit.

The analysis of these low-level circuits requires detailed circuit analysis, which is
beyound the scope of this thesis. The technique developed in this thesis verifies a
design in terms of parameterized models that represent the timing properties of these
low-level circuits. The parameters for these models are normally specified by integrated

circuit manufacturers when designing with standard components, or can be determined

-18



through low-level circuit analysis for custom integrated circuits.

1.4 PREVIOUS APPROACHES TO TIMING VERIFICATION

There have been a number of approaches to the verification of timing constraints
in digital logic systems. They can be grouped into two main categories: logic simulation

and worst-case path analysis. The next two sections will review these two approaches.

1.4.1 Logic Simulation

The logic simulation approach consists of building a model of a digital system,
which represents both its logical and timing properties, and then using this model to
detect both logic and timing errors. This approach is currently widely used [Ba78, Bo77,
Br72a, Ch74, Ch75a, Ch75b, Ha69, Kr77, Ku76, Ma77a, Ma77b, S272, S275) If the
system being simulated is a computer, then often programs will be loaded into the
simulator to be executed to determine if the digital logic design being examined will
execute them correctly and, if not, why not. The advantage of this approach over
directly implementing a prototype and testing it is that it is generally easier, faster and

cheaper to identify and correct the errors in the simulated design, and to then update the
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simulation model to reflect these changes. The logic simulator can also be built to take
into account variations in the propagation delays, set-up times, hold-times, and
minimum pulse width constraints, all of which occur from one component to the next. A
hardware prototype, on the other hand, only represents one sample of the large number
of possible combinations of timing properties, and cannot test the effects of possible

variations in the components’ timing properties.

The logic simulation of a circuit design can only show that the cases simulated will
work properly when the design is implemented. Therefore, unless all possible cases
which have distinct timing paths for a design can be simulated, there is no guarantee
that it does not contain undetected timing errors. For the design of a computer system,
this requires that all possible programs that exercise distinct timing paths need to be
identified and tried, if it is to be definitively shown that there are no timing errors in
the design. This is clearly a difficult task for any but the simplest digital systems. It is
usually impractical for large digital logic systems. The result is that normally all of the
distinct timing paths are not exercised on a logic-simulated design, possibly leaving

undetected timing errors to cause future problems.

Another problem with the logic simulation approach to timing verification is that
it needs to know the values of all the signals in the circuit. This in turn requires either
a complete design (including any microcode and programs) to be run on the simulator, or
some way of generating value patterns to drive the undefined signals. Waiting until the
design is completed to start logic simulation--when this problem is smallest—means that

errors are not found until late in the design cycle. Generating patterns to drive
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undefined signals in mid-design is a tedious, time-consuming process. To test only the
timing of a design, and not its logical correctness as well, requires knowing only when

most signals are changing and when they are stable, not their full value behavior.

One of the harder problems in logic simulation for timing verification is how to
handle the possible range of propagation delays which a given component may have.
There are two basic types of logic simulator systems that are used to address this
problem. They are éalled minimum/maximum-based systems and probability-based
systems. The type of system preferable in a particular situation depends on the design
methodology used in the design to be verified. The minimum/maximum-based system
corresponds to a design methodology where the delay of each component in the system is
characterized in terms of a minimum and maximum possible value. These values are
added in pairs to yield a pair of values corresponding to the minimum and maximum
delays through any given logic path in the design. The probability-based system
corresponds to a design methodology in which the delay of each component is given a
probability distribution, and these distributions are then combined to determine the

delay of a given path through the design, to some pre-specified confidence level.

The next two sections will discuss these two different approaches in greater detail.
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1.4.1.1 Minimum/Maximum-Based Logic Simulators

Minimum/maximum-based logic simulators take a minimum and .maximu_m
specification for each timing parameter in the system to be simulated which has a
possible range of values. TEGAS [Sz72, S275), SAGE [Ku76}, and LAMP [Ch74,
Ch75a] are examples of minimum/maximum-based simulators. These systems have one
or more extra states beyond the basic true and false states for specifying that a signal is
changing, and that its value is not known. For example, TEGAS when doing precise
delay timing uses 6 values: 0, I, X (initialization value), U (signal rising), D (signal
falling),. and E (potential spike, hazard, or race). To model a gate with a range of
possible propagation delays with this type of logic simulator, the output will be set to
these extra values between its minimum and maximum delay. Which value it will be set
to depends on the possible behavior of the output for the particular case being

simulated.

In general, the minimum/maximum-based system is simpler than the
probability-based system, both from the standpoint of the designer and the simulator. It
also corresponds to the way that components are normally specified. The problem with
the minimum/maximum-based system is that a real design usually could be made to run
faster than this system will predict. This is because the probability is quite low that all

of the components along a time-critical path will have the maximum or minimum
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propagation delay values, if the delays of the components along that path are

uncorrelated.

1.4.1.2 Probability-Based Logic Simulators

Probability-based logic simulators are the same as minimum/maximum-based
logic simulators, except that they keep track of the mean and variance associated with
events in the simulation, instead of the minimum/maximum times associated with an
event. The "DIGSIM” system [Ma77a, Ma77b], which uses this approach, assumes that
propagation delays are normally distributed, and stores a mean and variance to
characterize each delay parameter. When evaluating a gate, it combines the probability
function of all of its inputs to come up with a mean and variance characterizing the
output of the gate, assuming the time of the output change can be modeled with the
normal distribution. It also considers the correlation between the different delay

parameters and events within the simulation.

The basic problem with probability-based timing verification systems is that it is
difficult to get good data on the distribution of the delays of system components and the
timing correlations between the components. IC manufacturers normally test and sort
components based on minimum/maximum delays, and not probability distributions. The

probability distribution of the delays of components is also a function of the incoming



inspection procedures used. It is also difficult to get good data on the correlations
between the delays of the different components being used in the construction of a
design. For example, if a set of chips are all produced on one wafer, or in one
production run, then their basic propagation delays may all have maximum propagation
delays. Components can be mixed from different production runs to minimize this type
of problem, but that adds to the manufacturing cost. In a probability-based system,
taking into account any correlations is essential to avoid incorrect predictions.
Calculations in a probability-based system are also much more difficult for the engineer
to perform when checking the results of the simulation, and when determining the

number of levels of logic which can be used while doing the initial design.

1.4.2 Worst-Case Path-Searching Algorithms

The worst-case path analysis approach examines all paths through the
combinational logic between registers or latches, searching for the longest and shortest
paths. In the “GRASP” system [Wo078), which uses this approach, the user identifies
starting and terminating points in the design by hand. The system then searches all of
the paths between these starting and terminating points to see that they are within their
user-specified timing limits. If there are loops in the network that the user hasn’t broken
with a terminating point, the *GRASP” system proceeds until it reaches some

user-specified search limit. It is then up to the user to insert a terminating point in the

-24-



loop, and to rerun the analysis.

In the Race Analysis System (RAS) [Ha7l), these user-specified starting and
ending points for the search are automatically determined by the location of the latches
and registers in a design, rather than by hand. The main problem with this approach is
that it is unable to take into account the value behavior of the control signals when

evaluating the timing of a circuit, and therefore tends to generate numerous irrelevant

error messages.



Chapter II
A NEW APPROACH TO TIMING VERIFICATION

A new approach to verifying the satisfaction of timing constraints on large digital
systems will now be described. A detailed discussion of a system implemented using this
approach will be given in the next chapter. This approach operates on synchronous
sequential systems, and checks all of the logic-level timing errors which occur within
those systems. These include the non-satisfaction of the set-up, hold, or minimum pulse
width time requirements for registers, latches, and other complex functions. In addition
to examining for these errors, it checks the timing on control signals which are ANDed
with clock signals to verify that ;hey are stable while the clock is asserted, in order to
avoid any possible hazard conditions on control-conditioned clock lines. This approach
takes into account both the minimum and maximum propagation delays of all of a

system’s components, including the interconnections between them.

This approach does no low-level circuit analysis, but instead takes as input
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parameterized models which define the operation of the gates, registers, and latches.
Entirely different techniques are needed to do the low-level circuit analysis, which
consider the analog characteristics of the circuits. It aiso does no system-ievei timing
analysis, which would require it to understand the higher level protocols used between
communicating units. The only known ways to do this are either gate-level logic
simulation or construction of the system, and then evaluate §t in simulated or actual
operation. For interconnection delays, a specification of the minimum and maximum
delay from the output of one logic element to the input of another logic element is
required. The detailed transmission line analysis required to determine the possible
range of signal delays of a given interconnection is done in the SCALD Physical Design

Subsystem [Mc78a, Mc78b, Sp78, Sp79].

2.1 OVERVIEW OF THE VERIFICATION PROCESS

The timing verification approach developed here simulates one clock period of a
circuit, keeping track of when signals can change their value with respect to the clock
during that interval. The basic assumption behind such simulation is that signals have
a periodic behavior with regard to when they can change their value relative to the

central clock, which is normally the case for synchronous sequential circuits.

When a signal can charnge its value with respect to the clock is in general a
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function of the operation being done by the circuit. Calculating when a signal can
change for all possible operations is in some cases overly pessimistic, and can cause
numerous irrelevant error messages to be generated. In this situation, rather than just
simulating one cycle, a number of cycles are simulated. Each simulated cycle is called a
case, and only considers a subset of the possible operations done by the circuit. This
way, each cycle simulated handles the timing properly for the operation being simulated,

avoiding irrelevant error messages.

The designer specifies the different cases that need to be simulated individually.
The first case is then simulated, detecting any possible timing errors. After that, in
going from case-to-case, only the parts of the circuit that are affected by the case
analysis are reevaluated. The total number of cycles of the circuit simulated is then

equal to the number of cases specified by the designer.

All signals except for the clocks and a few control signals are simulated in terms of
whether they are stable or changing, instead of whether they are true or false. This
symbolic timing simulation has the advantage that it tests the circuit for most of the
possible state transitions in a signal pass. The resulting savings in computational effort

are clearly of factorial (i.e., exponential) order.

To clarify this approach, consider the following example. An edge-triggered
register is clocked at a particular time with respect to the central clock. The output of
the register can change only during a short time after it is clocked, so that it is

guaranteed to be stable for the entire clock period except around the point at which it is
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clocked. The output of a gate driven from this register can then be changing only

during an interval of time determined by its propagation delay and when its inputs can

the part of the circuit cycle when they are possibly changing, then there is a possible

timing error.

The first step in the timing verification process is to calculate for each signal in a
circuit when it could change during the circuit cycle time. Once this is determined, then
it is relatively easy to check all of the timing constraints placed on the circuit/. For
instance, in order to check the set-up and hold times on a register, all that is required is
to determine if its input could be changing at a time when it might be clocked. To check
that a control signal which is ANDed with a clock is stable when the clock is asserted is

-also a straightforward operation.

2.2 CIRCUIT CLOCK PERIOD

Circuits being verified must contain one basic clock, whose period has to be
specified. If different parts of the circuit being verified run at different clock rates, then
the period specified is the least common multiple of the different clock periods. For
example, a processor might have an instruction unit which has a period of 30 nsec and

an execution unit which has a period of 15 nsec. In this case, the period specified would



be 30 nsec. Clock signals which occur within the circuit may occur at any time within

the clock period.

2.3 TIME UNITS

Time is expressed in two sets of units to the Timing Verifier. When specifying
the timing properties of the components in which a design is implemented, absolute time
units are used (for example, nanoseconds). When specifying clocks and assertions in the
design specification, user-specified clock units are employed which are convenient for the
designer to use, and which can be scaled with the clock period. For example, the clock
units for a design might be defined to be one-eighth of the clock period. This allows

the relative timing within the design to automatically scale if the clock rate is slowed

down or speeded up as the design is done.

2.4 CIRCUIT MODEL FEATURES
Circuits are described for timing verification purposes in terms of gates, registers,

latches, set-up and hold time constraints, and minimum pulse width constraints. More

complex functions are then defined in terms of these primitives, through the use of
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graphic-based macros, using the SCALD Hardware Description Language [Mc78a,

Mc78b, Sp78, Sp79).

The following sections define the value system used to represent the behavior of
signals and defines the primitive functions used to specify the design to the Timing

VYerifier.

2.4.1 Value System Used To Represent Signals

At any instant in time, every signal in the circuit being timing-verified has exactly

one of seven values, with the following associated meanings:

Yalue Meaning

0 false, or 0

1 true, or |

S or STABLE signal is stable, not changing

C or CHANGE signal may be changing

R or RISE signal is going from zero to one
For FALL signal is going from one to zero
U or UNKNOWN initial value used for all signals

The value of a signal over the clock period is represented by a linked list, each node of

which specifies a signal value and the time duration of that value. The sum of the
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durations of all the nodes in the list must exactly equal the period of the circuit being

analyzed.

When a signal propagates through a gate or wire where it is delayed by a variable
amount of time, then skew is added to the signal representation, denoting the uncertainty
in when the signal will subsequently change. This skew is maintained separately in the
signal representation to preserve information about the width of pulses. This is done to
avoid incorrect assertions by the Timing Verifier that minimum pulse width
requirements have not been met. If two or more changing signals are combined, the
skew of the resulting signal cannot be represented separately. It is therefore incorporated
into the signal representation by using the CHANGE, RISE, and FALL values. A

detailed example showing this is given in Section 2.8.

2.4.2 Definition of Combinational Functions

This section defines the basic combinational functions used by the Timing

Verifier. All other combinational functions may then be defined in terms of these basic

functions.

The following tables define the INCLUSIVE-OR (OR), AND (AND),

EXCLUSIVE-OR (XOR), CHANGE (CHG), and NOT (NOT) functions for the
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seven-value logic system used in the Timing Verifier.

These functions are uniformly defined to give worst-case values. For example,
when the signal values “STABLE” and “RISING” are OR’ed together, the resultant
signal value given is “RISING”. This is because the output in this case will either be

stable or a rising edge, and the rising edge is the worst-case value.
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A XOR B

A B—-98 1 S CRFU
% 81 SCRFU
1 1 85 CF RWU
S s ssccecu
C ccccececu
R RFCCTCTCU
F FRCCTCTCU
U uuvuvuuvuvuuu
A CHG B

A B—-8 1 S CRF U
% s sscececu
1 S sscc¢cCcu
S s ssccecu
C cccccecu
R cccccececu
F. ccccececu
U Uuuvuuvuuuuu
NOT A

A

5l 1

1 8

S S

C C

R F

F R

u U

The output of the “CHANGE” function has the value “UNDEFINED” if any of
its inputs are undefined. If all of its inputs are defined, then it has the value
“CHANGE?” if any of its inputs are changing; otherwise it has the value “STABLE”. It
is a useful function in modeling complex combinational logic, where the actual function
being performed is not significant to the verification process. Common examples are in

the modeling of parity trees and adders, in which cases the Timing Verifier cares only
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when the outputs of these circuits are changing, not about their actual values. This

again results in a factorial-level reduction in the complexity and computational effort of

modeling these functions.

2.4.3 Models for Registers and Latches

The Timing Verifier has two models for registers which are shown in Figure 2-1.
The first register model just has “CLOCK” and "DATA” inputs, and can change its
output only on the rising-edge of its “CLOCK" input. The output of the register will be
set to the "CHANGE” state during the time following the rising-edge of “CLOCK” as
determined by the minimum and maximum delays of the register. Unless the “DATA”
input is a true or false during the rising-edge of the “CLOCK” input, the output will be
set to the “STABLE” value for the rest of the cycle; otherwise, it will be set to the value
of the “DATA" input. The example in Figure 2-1 shows a minimum delay of 1.0 nsec

and a maximum delay of 3.8 nsec being specified for the register, which is 32-bits wide.

The second register shown in Figure 2-1 is the same as the first, except that it has
asynchronous “SET” and "RESET” inputs in addition to the “DATA” and *CLOCK"”
inputs. If the “SET” input is true and the "RESET” input is false, then the output of
the register is set to true. If the “‘RESET” input is true and the "SET” input is false,

then the output of the register is set to false. If both the “SET” and “RESET” inputs are
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true, then the output is set to “UNDEFINED”. If both the "SET” and "RESET” inputs
are false, then the register operates identically to a register without the “SET” and
“RESET” inputs. For the cases where the “SET” and “RESET" input are changing, the
output is set to the “CHANGE" state. If the “SET” and “RESET" inputs are stable, then
the output will be stable if the register is not being clocked. The minimum and
maximum propagation delays from all of the inputs are the same, and are given by the
delay property of the register. If chips with different propagation delays from different
inputs are to be modeled, then buffers are used on the various inputs to insert the
proper delays.  Primitives with different delays from different inputs could be

implemented to improve execution efficiency, if desired.

EDGE TRIGGERED EDGE TRIGGERED
D-TYPE REGISTER D-TYPE REGISTER
WITH SET AND RESET
328 286
REG RESEY R REG RS
R SET______1s R
para . T ouTPUT paTA : T ouTRUT
DELAY= pELAY-
1.0,3.8 1.0,3.8
o o
PaN PaN
CLOCK CLOCK
Figure 2-1

Two register models used by Timing Verifier

The Timing Verifier has two models for latches, as shown in Figure 2-2. The



“OUTPUT” of the first latch follows the "DATA” input when the “ENABLE"” input is
high, and holds the last value given by the “DATA;' input when the “ENABLE” input
is low. The “SET” and "RESET” inputs on the second latch in Figure 2-2 operate the
same as for the register, and override the operation of the latch when they are non-zero.
The minimum and maximum propagation delay from all of the inputs on the latch are
the same, and is given by the “DELAY" property. For the example shown in the Figure,
the minimum propagation delay is 1.0 nsec, and the maximum propagation delay is 3.5

nsec.

LATCH LATCH HWITH
SET AND RESET INPUTS
320 328
LATCH RESET R LATCH RS
L SET s L2
pata__ |, T ouTPUT DATA I Tl ouTPUT
DELAY= DELAY=
1.0,3.5 1.0,3.6
EN EN
ENGELE ENGBLE
Figure 2-2

Two latch models used by Timing Verifier
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2.4.4 Set-up and Hold Time Checkers

There are two primitive functions shown in Figure 2-3 which are used to check
set-up and hold times. The first checker is called a 'SETU? HOLD CHK?", and checks
to see that the signal connected to the “I" input is stable for a period around the rising
edge of the "CK"” input. The "SETUP” property specifies the set-up time interval,
which is the length of time the input signal must be stable before the rising edge of the
clock input. The “HOLD?” property specifies the hold time interval. This is the length

of time the input signal must be stable after the rising edge of the ciock input.

The second primitive shown in Figure 2-3 is a "SETUP RISE HOLD FALL
CHK” primitive. It checks the set-up time interval of the input before the rising edge of
the clock input, and the hold time interval after the falling edge of the clock input. It
also checks to see that the input “I” is stable for the entire time interval over which the
clock input “CK” is true. This type of set-up and hold checker is needed to verify the

timing constraints on components such as memory elements.
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SETUP HOLD CHK SETUP RISE
DATACR: 31 ! st pATAc@: 31> Iuow Fs‘au ox

SETUP-2.5; SETLP=2.6;

HOLD =1.5 \ HOLD 1.5

CIK K
€LOCK CLOCK
Figure 2-3

Set-up and hold time checkers used by Timing Verifier

2.4.5 Minimum Pulse Width Checking

The minimum pulse width checker primitive is used to specify verification of
minimum pulse width constraints. Clock inputs to components typically have a
minimum pulse width requirement which says that when they go high, they must stay
high for some specified interval of time, and that when they go low, they must stay low
for some specified time interval. Figure 2-4 shows the “MIN PULSE WIDTH”
primitive, which shows a minimum high pulse width of 5.0 nsec being specified, as well

as a minimum low pulse width of 3.0 nsec.
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MIN PULSE WIDTH

CLOCK I LOC
HIGH=5.0;
LOW =3.0

Figure 2-4

Minimum pulse width checker

2.5 SIGNAL ASSERTIONS

In order to be able to analyze partially designed circuits, the Verifier must have
timing assertions on as-yet undefined signals. Undefined signals with no assertions are
taken to be always stable, to prevent them from giving rise to numerous spurious timing
errors. These signals are also put on a special cross reference listing, for appropriate

attention from the designer to be directed to them once.

For defined signals, two types of assertions are used for specifying clocks, and one
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is used for defining the behavior of control and data signals.

2.5.1 Clock Assertions

There are two categories of clock signals: precision and non-precision. The only
difference between precision and non-precision clock specifications is the defauit skew
used by the Timing Verifier when none is explicitly given by the designer. Skew is
generated by the variation in the interconnection delay to the different parts of a large
digital system and by the variations in delay between the different buffers used in the
clock generation. In the design of a large digital system, these variations can become
quite large, and may degrade performance unacceptably. To reduce such skew to within
acceptable limits, the shorter clock paths can have additional delays deliberately inserted
into them. Because the delays in a clock distribution system may vary between successive
implementations of a design, in many cases it must be ad justed by hand, using some type
of ad justable delay for each of the clock lines. By use of this technique, the skew can be
reduced to below some designer-specified value. In order to verify the timing in a
design which has been so de-skewed, it is necessary to describe in detail how the clocks
will be adjusted within the design specification. A number of features have been

provided to make this task as easy as possible, and will be described in the section on

evaluation directives.
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If a clock signal is ad justed to some specified skew, then an assertion can be given
within its signal name signifying that fact. Assertions are given at the end of signal
names and are preceded by a period. They are considered part of the signal name by
the rest of the SCALD system, which thereby guarantees that all of the assertions for a

given signal are consistent by definition.

The format for the assertions for the precision and non-precision clocks are

<signal name> ,P <assert spec>
<gignal name> .C <assert spec>

<value specification>

<skew specification> <polarity assertion>

<precision clock>
<non-precision clock>
<assert spec>

<value specification> ::= <time range> |
<time range> , <value specification>

<time range> sim <time> | <time> - <time> | <time> + <time>
<time> $:= <real number>

<skew specification> tte | ( <minus skew> , <plus skeu> )

<minus skew> t3= - <real number> | <zero>

<plus skew> i:= <real number> | <zero>

<time> t:= <clock units>

<clock unitss> t:= <real number>

<polarity assertion> se= | L

An example of clock specification is

XYZ C4-6 L

which states that the clock signal goes from high to low at time 4, and from low to high

at time 6. The signal
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XYZ C2-3,5-6

is high from 2 to 3 and from 5 to 6, and is low for the rest of the clock cycle. If a single

time is given instead of a range, a time interval of one clock unit is assumed. For

example,

XYZ C2,5

is equivalent to the previous signal. The signal

XYZ P25

is again equivalent, except that it is a precision clock, which means that it has a different
default skew. In general, it was found in the design of the S-1 Mark IIA processor that
having two types of clocks -- those that have been ad justed to reduce skew, and those

that haven't -- was convenient. The motivation was to only ad just those clocks which

must be ad justed, in order to reduce the aggregate cost of clock de-skewing.

If a plus sign is given between the two time variables instead of the minus sign,
then the second number specifies a width in nanoseconds, rather than the time of the

end of the pulse in clock units. This allows widths of clocks to be specified which don’t

scale with the cycle-time of the circuit. For example,
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XYZ P2+10

specifies a clock that goes high at clock unit time 2, and stays high for 10.0 nsec

thereafter.

2.5.2 Stable Assertions

The stable assertion is used to specify when a control or data signal is stable, and

when it may be changing. Its general form is
SIGNAL NAME $ <value specification> <polarity assertion>

For example, the name XYZ .S4-8 says that the signal is stable from time 4 to time 8,

and that it may be changing during the rest of the cycle.

This type of assertion has several uses. First, it allows the designer to specify his
assumptions about when signals are valid (i.e, not changing) as he creates them in the
design process, and those assumptions will be used by the Timing \}erifier until the
signals are generated by hardware. For signals so generated, the designer’s initial timing
assertion is checked against the timing of the actual signal, and an error is given if the

assertion is violated. Having these assertions on signals greatly improves the readability
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of the design, since a signal name explicitly includes a specification of when it is valid.

Putting these “stable” assertions on interface signals is the key to the ability to
verify a design in sections. After each section is verified, SCALD checks to see that all
interface signals have the same timing assertions on them. If no section of a design
being verified has a timing error and if all of the interface signals of all such sections
have consistent assertions on them, then the entire design must be free of timing errors.
This modular verification capability is in turn crucial to the real-world utility of the
timing verification approach described here, just as the use of subroutines and

procedures is to structured programming.

2.5.3 Interconnection Delay Specification

Taking into account the effects of interconnection delays throughout the design
process is essential if maximum system performance is to be attained when the design is
completed. The consideration of these delays needs to be approached from two different
points of view, depending on whether or not the design is far enough along to allow the
actual interconnection delays to be calculated. If the interconnection delays can be
calculated from detailed simulation of the transmission line properties of the
interconnections in the circuit-as-packaged, then these delay values are used by the

Timing ~Verifier when checking timing constraints within the design. If the
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interconnection delays are not yet known, the Timing Verifier uses a default
interconnection delay for each signal. If the designer wishes, he may specify within the
design a range for the interconnection delay for a specific signal, which will then

override the default specification.

2.6 EVALUATION DIRECTIVES
Evaluation directives are used to specify:

® That the control signals being ANDed with a given clock signal must be stable
while the clock is asserted. This is used to detect possible hazards which could
be generated on the output of a gate, resulting in false clocking of the circuit
that the gate controls. Section 1.3.2 gives an example of this type of timing
error. In addition, these directives cause the Timing Verifier to assume that
the control signals will be enabling the gate, so that its output value will be

determined only from the value behavior of the clock signal.

@ The tuning of clocks in systems that have hand-ad justed clocks to reduce skew.
Additional information is needed here since the prints don’t specify how the

clocks are ad justed.



Consider the circuit shown in Figure 2-5. The clock signal “CK .P2-3 L” is being
ANDed with the control signal “WRITE .S0-6 L” to generate a write-enable pulse for
the RAM array. The "&H” directive specifies checking that the control signal "WRITE
S50-6 L” is stable during the interval over which the clock is asserted, to ensure that the
“write” will be either solidly enabled or completely disabled. In addition, this directive
says the timing specified by the clock signal is to be ad justed so that it refers to the time
at which the output, rather than the input, of the gate changes. This corresponds to a
circuit in which the clock signals are ad justed to eliminate the skew generated by gating
of the clock lines. The “&H” directive also specifies the assumption that the value of the
“WRITE .80-6 L” signal is enabling the gate, allowing the clock signal to always

propagate through the gate.

The different evaluation directive and their meaning are:

E Evaluate gate with no special action. This is the default mode.

w Zero wire going into gate.

z Zero gate and wire going into it.

A Check to see that other inputs to gate are not changing when this

input is asserted (true). In calculating the output of the gate, assume
that the other inputs are enabling the gate.

H This directive has the combined effects of the “Z” and “*A” directives.

For example, in Figure 2-5 the “&Z” directive on the signal “CK .P0-4” states that
the clock timing refers to the time at which the oufput of the gate changes. If multiple

directives are given after a signal, such as “%HZ", then the first letter refers to the first
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level of gating after the directive, the second refers to the second level of gating, etc.

There is no limit on the length of a directive string.

328
160 RAM 328
101458/ REG
W DATA . SB-£<0: 31> " RAMKQ: 31> 10176 OUTPUT<@: 31>
I Ri T 1 R2 T
R
WRITE ADR .S0-6¢0: °
48
10158 ADR«Q: 3> [0.0:6.
0158 1 [0.2:6.9) |__®ec ax

READ ADR ,S4-%a: D

' s

CK _.P4-B !

CK . P2-3 L &H c
10185R
WRITE .S0-6 | o ] E L

Figure 2-5

Example macro definition
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2.7 CASE ANALYSIS

When the timing verification of all possible operations of a circuit are reduced to
the simulation of one cycle of the circuit through the use of the “STABLE” and
“CHANGING” values, overly pessimistic results are sometimes generated. When this
occurs, the timing verification can be broken down into a number of separate
simulations of the circuit. Each simulation tests out distinct operations of the circuit
which place different timing constraints on the circuit. In doing these separate
simulations, only those parts of the circuit that are affected by the case analysis are

reevaluated, permitting most case analysis to be done quite efficiently.

Some circuits have paths through them which are never used, and which require
the case analysis feature to avoid generating pessimistic timing delays. Consider the
example shown in Figure 2-6. If the circuit is analyzed without case analysis, where the
signal *CONTROL SIGNAL” has the value “STABLE", then the delay from the signal
“INPUT” to the signal “OUTPUT” would be calculated to be 40 nsec. The problem is
that the Timing Verifier wouid be unable to determine that both of the multiplexers
could not select the "1” input at the same time. To use case analysis, the designer would
specify that the signal “CONTROL SIGNAL” needs to analyzed separately for the cases

when it is true and when it is false. For the first case, the Timing Verifier would then
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set the signal "CONTROL SIGNAL” to the value “0" whenever the circuit would
normally set it to the value “STABLE". For the next case, it would set it to the value *1”
whenever the circuit would normally set it to the value “STABLE”. By doing this, the
two select lines on the multiplexers would always be set to complementary values, and the
dela‘y from the signal “INPUT” to the signal "OUTPUT” would be calculated to be 30

nsec for both cases.
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DELAY=2, 0

CONTROL SIGNAL | BUF
61

Figure 2-6

Example of circuit requiring case analysis
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2.7.1 Case Specification

The designer must identify and specify the cases which need to be handled by case
analysis. He does this by mapping the “STABLE” states into either *0” or “1” for the
signals which control the operation that the circuit is to perform. Consider the following

specification:

CONTROL SIGNAL=8;

CONTROL SIGNAL=1:

This specification gives two cases to be evaluated for the circuit in Figure 2-6. The first
case causes the circuit to be simulated with the signal “"CONTROL SIGNAL" having its
*STABLE" values mapped into the value *1”. The second case specified causes the

circuit to be simulated again with the signal "CONTROL SIGNAL” having its

*STABLE” values mapped into “0".

~52-



2.8 REPRESENTATION OF SIGNAL VALUES

The Timing Verifier represents in memory the value of each signal over the
circuit cycle time. It uses a linked list, which has the format shown in Figure 2-7. For
each signal, there is a "YALUE BASE” record with a free storage link, a field to store
the skew, a pointer to the evaluation string, and a pointer to the linked list representing
the signal value. The “YALUE" recordbspecifies the signal value and the width of that
value. The sum of all of the “VALUE WIDTH?” fields on the linked list is required to

exactly equal the cycle time of the circuit being verified, for consistency-checking

purposes and to avoid ambiguity.
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NEXT UALLE PTR NEXT UALLE PTR NEXT UALLE PTR
SIGNAL VALLE SIGNAL VALLE SIGNAL VRLUE
UALLE WIDTH VALLE WIDTH VALLE WIDTH

Figure 2-7

Data structures used to represent signal values

The “SKEW?” field is used to represent skew caused by delaying the signal by a
variable amount of time. Consider the example in Figure 2-8. The gate has a
minimum delay of 5.0 nsec and a maximum delay of 10.0 nsec. The two input signals
will be ORed together as if the gate had zero delay, and the value of the output signal
will then be delayed by the minimum delay. The skew field will then be set to the
difference between the maximum and the minimum delay of the gate. By doing th‘is.
rather than by using “RISING” and “FALLING” values to represent the uncertaintity in

when the signal will transition between a zero and a one, the symmetry information



about the width of pulses is preserved since the rising and trailing edges of the signal
are delayed by the same amount. When modeling a technology in which the rising and

falling values of signals are different, this algorithm will have to be modified to take

such asymmetry into account.

DELAY=5, 10
X
| 2 OR
Y G1 P4
x o | 1 ll ©
P S— |
T= T=10 T=3R Tw50
N % | 1 | ©
Ta20 Te42
r4
4 | R | 1 [ F ]
TatS Tu2@ T=45
r4
UALLE BASE RECORD
NIL UALLE RECORD UALLE RECORD VALLE RECORD
NIL
5 [ 1 (]
NIL 15 ’ 3 5
Figure 2-8

Examole showing how skew is handled
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This separate representation of skew can be used in essentially any situation in
which a signal value is merely being delayed by a variable amount. However, if two
signals are being combined, then the skew of the combined value in general cannot be
simply represented with a single field. Because of this, when two signals are combined,
their skew is inserted into the resultant signal representation using the “RISING” and
“FALLING” vaiues. For example, the output signal “Z” from the last example is shown

in Figure 2-9 with its skew inserted into the signal value. -

2 0 | R | 1 L F ]

T=15 Tu0 Twds

UALLE BRSE RECORD

NIL URALLE RECORD VALLE RECORD
L] e R
NIL 15 6
URLLE RECORD VALLE RECORD
NIL
1 3
25 5
Figure 2-9

Output signal Z with skew represented in signal value

The “EVAL STR PTR” field is used to keep track of the evaluation string
associated with the signal value. For example, if the evaluation string "HZZW?" is given

on the input of a gate, then each letter specifies how to evaluate a subsequent level of



gating. Each gate will remove the letter which specifies how to evaluate it, and wiil pass
along the rest of the string and the output value from the gate, to specify how to
evaluate the nexf level of gating. The string “HZZW” would then specify the evaluation
of four levels of gating, with the "H” controlling the first level, and the "W” controlling

the fourth and last level.

2.9 TECHNIQUE USED FOR CIRCUIT EVALUATION

The first step in evaluating a circuit is to initialize to “UNDEFINED” all signals
without assertions. Signals with clock assertions are set to the value specified. Signals
with stable assertions are set to the value “STABLE” during the time specified by the
assertion, and to the value "CHANGING” the rest of the time. Signals which are
specified in the case anaiysis file will be set to the value specified for the case being

calculated whenever they otherwise would be given the value "STABLE".

In the next step, the Timing Verifier evaluates all of the primitives which define
the circuit by looking at their current input values and, based on these, calculating new
output values. Whenever a new output value is different from its old value, all of the
primitives which are driven by that output are added to a list of primitives to be
evaluated during the next pass of the Timing Verifier. This process continues,

reevajuating those primitives which have had their inputs changed, until all of the
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signals stop changing. At that point, the Timing Verifier knows the value of each signal

over the clock period, for the first case to be analyzed.

The next step is to evaluate all of the set-up and hold times, and minimum pulse
width checkers, based on the value of their inputs, and to output error messages
reporting any errors detected. This error checking includes set-up and hold time
constraints specified both by the set-up and hold time primitives and by the “&A” and

*4&H" evaluation directives.

At this point, the first case has been evaluated, and the Timing Verifier is ready
to evaluate the next case. This involves changing the values of those signals specified
by the case analysis file, and reevaluating those primitives whose inputs are affected.
This process is continued, as in the first case, until all signals stop changing. At that
point, the second case has been checked. The Timing Verifier will continue this process,

incrementally reevaluating the network, until all of the cases specified by the designer

have been checked.



Chapter III
APPLICATION OF TIMING VERIFICATION

This chapter gives a set of examples of the use of the SCALD Timing Verifier,

and discusses statistics on its use.

3.1 SPECIFICATION OF TIMING PROPERTIES OF COMPONENTS

The timing properties of the components which constitute a design are described
to the Timing Verifier in terms of a set of built-in primitive functions. These functions
include gates, registers, latches, multiplexers and set-up/hold/minimum-pulse-width

checkers. The definitions of these primitives are given in Section 2.4.

A manufacturer’s specification of a 16-word by 4-bit register file chip is given in
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Figure 3-1 to 3-4. The specification to the Timing Verifier of this component’s timing
properties is given in Figure 3-5, and is expressed in the SCALD Hardware Description
Language [Sp79). A brief description of the basic features of this SCALD language will

be sketched in the following example.

Figure 3-5 represents a macro to be expanded every time the chip with name
“16W RAM 10145A" is used. This definition defines a memory whose width in bits is
given by the variable “SIZE”, which is defined when the macro is called. A call to this
macro is shown in Figure 2-5, showing a size of 32 bits being specified. The
“PARAMETER” body in Figure 3-5 defines the parameters which can be passed to it,
and also specifies the number of bits which each parameter may be passed. For
example, the parameter declaration "I<0:SIZE-1>" says that the “I” parameter has bits
numbered from “0” to "SIZE-1,” and is thus “SIZE” bits wide. The string */P” after a
signal name says that the signal is a parameter of the macro, and is used as a consistency
check, as well as improving the readability of the macro. The string /M” says that the
signal is local to the macro. If neither “/M” or */P” are given, then the signal is global.

The name of this macro “I6W RAM 10145A" is given in the lower center portion of the

drawing.

The “I6W RAM 10145A" definition checks the set-up and hold time constraints
on the input signals “I<0:SIZE-1>", “CS”, and "A<0:3>", by using the “SETUP HOLD
CHK” and “SETUP RISE HOLD FALL CHK"” primitives. For example, the upper
“SETUP HOLD CHK" body checks that the “I<O:SIZE-1>" inputs are stable at least 4.5

nsec before the falling edge of the write-enable ("WE”) pulse and for at least -1.0 nsec
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after it. The leading "-" on the signal “- WE” says to use the complement of the signal
“WE". The “SETUP RISE HOLD FALL CHK"” body, in the lower left hand corner,
checks that the address lines of the memory ("A <0:3>") are stable at least 3.5 nsec before
the rising edge of the write-enable pulse, that they are stable while the write-enable
pulse is high, and that they stay stable for at least 1.0 nsec after the falling edge of the
write-enable pulse. The "MIN PULSE WIDTH" primitive checks that whenever the

write-enable pulse goes high, it does so for at least 4.0 nsec.

The “CHG” and "3 CHG" gates at the top of the page cause their outputs to
change after the delay specified by the “DELAY" parameter whenever their inputs
change. For the "CHG” gate, the "DELAY"” parameter says that it has a minimum delay
of 1.5 nsec, and a maximum delay of 3.0 nsec. For the “3 CHG" gate, the “DELAY”

parameter says that it has a minimum delay of 3.0 nsec, and a maximum delay of 6.0

nsec.
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F10145A e F10545A

16 x 4 REGISTER FILE (RAM)
F10K-VOLTAGE COMPENSATED ECL

GENERAL DESCRIPTION ~ The F10145A and F10545A are high-speed 64-bit Random LOOIC SYMBOL
Access Memories prganized as 8 16-word by 4-bi array. External logic requirements are
minimized by intemal address decoding, while memory expansion and data bussing are
facditated by the output disabiing features of the Chip Select (CS) and Write Enable (WE)

A HIGH signal on o prevents read and write operations gnd forces the outputs to

the LOW state. wnen C5 15 LOW, the WE input controls chip operations. A HIGH na®w T ms  omn
signat ol WE disables the Data input (Dp) butiers and enables readout form the 0ns | oms | we ez
memory location determined by the Address (An) inputs. A LOW signal on WE forces ' I ] J J J
the Qn outputs LOW and aliows data on the Dp inputs o be stoted in the addressed A Ay Mg Mg By B D Dy
iocation. Data exits in the same logical sense as presented at the dats inputs, e, M >-—acs
the memory is non-inverting.
[T o
® READ ACCESS TIME=T7 ns TYP S 0 0 0
50 k2 INPUT PULL-DOWN RESISTORS ] iN [ A
® OUTPUTS CAN BE WIRED-OR FOR EASY MEMORY EXPANSION ™ um
® CHIP SELECT ACCESS TIME—4 ne TYP
® VOLTAGE COMPENSATED, INSENSITIVE TO POWER SUPPLY VARIATIONS
® FULLY COMPATIBLE WITH ALL 10,000 SERIES ECL
PIN NAMES
cs Chip Select VegsPin 184
Ap Audress Lines VggaPin g (12)
On Daia input Lines ( ) = Retpek
WE Write Enabie
Qn Data Output Lines
LOGIC DIAGRAM CONNECTION DIAGRAM
b B DIP (TOP VIEW)
PACKAGE OUTLINE 6B
o premmtens W
[ rsoee | =
rgu—— _—
Ay e WWORD » 48T
1 = oy ol
g ] ——
J—

Voe=Pm 18 4) o
" Ete

SN 6 6 O

Figure 3-1

Manufacturer’s data sheet for register file chip

Reprinted with permission from Fairchild Camera and Instrument Corporation, 464 Ellis
Street, Mountain View, Ca. 94042.
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FAIRCHILD ECL ® F10145A ® F10545A

DC CHARACTERISTICS: Vggw -82 V, Voo = GND
LIMITS
BYMBOL CMARACTERISTIC y P ry UNITS Ta CONDITIONS
[ITY] input Current MIGH ™y 3°C ViN® ViHA
TS a0~A2 200
WE. D003 20 |
133 Supply Current [~ 150 { -~ Y00 mA 25°C Inputs and Outputs Open
AC CHARACTERISTICS: VEg = =52V, To=25°C
LIMITS
Y M|
SYMBOL CHARACTERISTIC ] e ry UNITS CONDITIONS
Access/Recovery Times
tacs Chip Select Access 3.0 45 8.0 ns Figures 1,3
tRCS Cnip Select Recovery 30 45 80 ns
tAA Address Access 45 es 80 n
Write Times /
Set-Up
wWsD Dats 48 80 n
twscs Chip Select 45 28 ns
tWSA Address 35 1.5 ne Figures 1, 2a
Hold
tWHD Dets -10 -25 ns
tWHCS Chip Betect 1] 0.0 ns
tWHA Address 0 -1.0 ne
twr | Write Recovery Time 20 s 80 " Figures 1,3
tws Wtite Disabie Time 0 48 8.0 ne
tw Write Pulse Width, Min 490 25 ne Figures 1, 2a
tcs Chip Gelect Pulse Width, Min 40 25 ns
Gelact Times
Setip
tcsp Data 48 30 ne
fcsw Wrtte Enable 4s 28 ns
csa Address s 15 ne Figures 1,20
Hold
toMp Deta ~-10 -25 ~
foHw Write Enable 05 00 n
tCHA Address 1.0 -10 ns
Trarsition Times
[T 20% to 80% : 15 28 39 [ Figures 1,3
THL 0% to 20% 1.5 25 38 ne
Figure 3-2

Manufacturer’s data sheet for register file chip

Reprinted with permission from Fairchild Camera and Instrument Corporation, 464 Ellis
'Street, Mountain View, Ca. 94042.
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FAIRCHILD ECL ® F10145A ® F10545A

SWITCHING CIRCUIT AND WAVEFORMS
Fig. 1

x MPUT PULBES)
R} ARIE R
-7 ———— e — - -

= eanv

PuLSE il olia —’IM ju,lo-
GENERATOR U LTI RY T

19 vasaH o l A L1 and L = equal length 50 & impedence fines
we S & Ay =80 @ terminaiion of scope
- C( = Jig and stray capacitance < $.0 pF

Decoupling 0.1 »F from gna to Vg and Voo
e Voo1=Vooe =20V

(X
. GENERA Vggm =32V
.‘.":.'&.:’E'J“ Tons. Open input = LOW

Fig. 2. WRITE MODES
2s. WRITE ENABLE STROBE 20, CHIP SELECT STROBE

ADDAESS AND Dji SET-UP AND HOLD TIMES (CS = LOW) ADDRESS AND D)y SET-UP AND HOLD TIMES (WE « LOW)

CHIP BELECT SET-UP AND HOLD TIMES WRITE ERABLE SET-UP AND HOLD TIMES, T8 PULSE WIDTH?
a -/ wE 5

I-—m——— whnes 4‘~ W ———| ICNW !‘

i _—\'\_7( ) \_7[_

—— cs——

Figure 3-3

Manufacturer's data sheet for register file chip

Reprinted with permission from Fairchild Camera and Instrument Corporation, 464 Ellis
Street, Mountain View, Ca. 94042.
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CL ® F10145A ® F10545A

FAIRCHILD

WAVEFORMS (Cont'd)

Fig. 3. READ MODES

ADDRESS INPUT TO DATA OUTPUT (WE = HIGH, TS = LOW)

ADDRESS ACCESS TWME

CH1IP SELECT INPUT TO DATA OUTPUT (WE = HIGH)

CHIP SELECT ACCESS AND RECOVERY TWES

WRITE ENABLE INPUT TO DATA OUTPUT (T = LOW)

WRITE RECOVERY, DISASLE TIMES

Figure 3-4

Manufacturer’s data sheet for register file chip

Reprinted with permission from Fairchild Camera and Instrument Corporation, 464 Ellis
Street, Mountain Yiew, Ca. 94042.
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DELAY=1.5, 3.8

DELAY=3.0, 6.0

CS A oSIZE T<@:SIZE-1> P
WE /P 9SIZE G2
(s17E)
SETUP HOLD CHK
s1
1¢@:SIzE-1> /P 1 PARAMETER DEFINE MANUFACTURER
SETLP=4.5;
HOLD =-1.0 1¢@:S12E- b X STEP = SIZE £
WE L
T cs L
a3
8
SETUP HOLD CHK TC@:SIZE-1 A
¢s P . s2
SETUPe4.5;
HOLD =@.5
X
- P T
P
SETUP RISE
HOLD FaLL CHK
e P . a
SETUP=3.5
HOLD =1.0
o« MIN PULSE WIOTH
[} il I 1 W1
HIGH=4.8;
LOH =0.8

16W RAM 18145A

Figure 3-5

Definition of a 16-word random access memory chip

The definition of a 2-input multiplexer chip is given in Figure 3-6. This

definition is given in terms of the 2 MUX" primitive, which has a minimum specified



delay of 1.2 nsec, and a maximum delay of 3.3 nsec from any of the inputs to the output.
The select input (*S”) has an additional minimum delay of 0.3 nsec, and an additional

maximum delay of 1.2 nsec, which is added to the delay of the 2 MUX" primitive.

PARAMETER DEFINE

MANUFACTURER
& Q:SI2E-1> X STEP = SIZE s
1¢@:S1ZE- 1>
S
T<0:SIZE- 1>
HB:SIZE-1> A P (S1ZED
2 X
Mt T T<0:S12E-1> A
DELAY=
1<@:S1ZE-1> 1.2,3.3
' .
S
S P (e0.3:1.2) l
10158
Figure 3-6

Definition of a 2-input multiplexer chip

The definition of an edge-triggered register is given in Figure 3-7. This
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definition is stated in terms of the register primitive. It has a minimum delay of 1.5 nsec

and a maximum delay of 4.5 nsec. The “SETUP HOLD CHK” primitive specifies a

set-up time of 2.5 nsec and a hold time of 1.5 nsec for the data input “I<0:SIZE-1>" with

respect to the “CK".

1<@:S1ZE-1> P

(S1ZEY
SETUP HOLD CHK
St

1
SETUP=2.5;
HOLD «t.5
K

(SIZE)
REG

R1

T<@:SIZE-1> P

DELAY=
1.5,4.5

18176

Figure 3-7

PRRAMETER DEF INE
LR:SIZE-1 X STEP = SIZE
5.4

T<@:SI1Z2E-1> AV

MANUFARCTURER

Definition of an edge-triggered register chip

The definition of a 2-input OR gate is shown in Figure 3-8. It is defined in

terms of the “2 OR” primitive. The gate has a minimum propagation delay of 1.0 nsec

and a maximum propagation delay of 2.9 nsec.



PARAMETER DEFINE MANLFACTURER

10 L<O:SIZE-1> X STEP = SIZE Frs
11 Le@:SIZE-1>

T L<¢@:SIZE-1»

DELAY=1.0,2.9
10 L¢@:SIZE-1» AP (s1z6)
& B
11 L@:SIZE-1> /P
> 7 e I T LC@iSIZE-D P
18185A
Figure 3-8

Definition of a 2-input OR gate

The Timing Verifier definition of an arithmetic/logic unit with output latch is
shown in Figure 3-9. This unit performs one of 16 functions on the three data inputs
A <0:3>", “B<0:3>", and “CI”. The function to perform is selected by the input *S<0:3>".
The input “E” enables the output latch. The “SETUP HOLD CHK” primitives check
the set-up and hold time constraints on the data inputs when the latch is closed. The

propagation delay from the data inputs to the output is specified by the group of "CHG"”

gates.
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18 18 18
SETLP HOLD CHK SETUP HOLD CHK SETUP HOLD GHK
e . 3 7868 [1] M . $1 s L1.3) M|y sz
SETP = 2.7; SETLP = 4.4; SETLP = 2.1;
HOLD = -2.5 HOLD = @.9 HOLD = ©.9
x o K
e A DELAY2.3, 1.8 P
7808 M [0.5:2.9] < ”ff“
785 M [0.0:3.3] 306 70 4 . Fo:p A
62 1" oecar- —
1.3,3.4
13 44 DELAY-1.3,2.8 EN
1808 M (8.7:5.0) 3 o6 0 » £ #
bELaY=0.0 T8S M [1.5:5.6] 1 64
Na\
0D A BO:D A r:_:s 1808 M pepgi PRRIVETER DEFINE
) / 1868 M [1.4:6.5) ;:f;: X STEP = 4
J 2 CHG \ PGP A cx'c.
DELAYR. 0 78S M [2.0:6.1] G5 iy
MANUFACTLRER
E o
8c@: > P CGFBCG T$S M DELAY=0.0 oL w £
2 /1888 M [1.4:6.5] pGF‘S’:‘,’G,’uN
J 2 CHG \ PG« A '
T85 M [2.0:6.1] 66
160181
Figure 8-9

Definition of an arithmetic/logic chip (ALU)
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3.2 CIRCUIT VERIFICATION EXAMPLE

Figure 2-5 shows an circuit example to be analysed by the Timing Verifier. This
circuit consi.sts of a 16-word by 32-bit register file, a 32-bit output register, a 2-input
multiplexer which selects between the read and write addresses for the register file, and
several gates. The circuit is designed to run with a cycle time of 50 nsec. The
minimum/maximum pair of default wire delays used by the Timing Verifier in checking
this circuit was 0.0/2.0 nsec, and the default clock skew for the clocks was - 1.0 to +1.0

nsec. The time unit used in the specification of the clocks and assertions is 6.25 nsec,

which gives 8 clock units per cycle.

One of the most useful features of the Timing Verifier is its ability to analyse all
of the timing properties of a design as the design proceeds, rather than having to wait to
be used until the design is completed. As such, it can accept as input the description of
this circuit example, which would typically be a small section of a much larger system,

and determine if it contains any timing errors.

The stable assertions on the input signals which are not generated in this circuit
are crucial to the ability to verify a design in sections. For example, the assertion on the
signal “W DATA .S0-6” states that it is stable from time 0 to time 6, and that it may be

changing during the rest of the cycle, i.e. from time 6 to time 8. The assertion on the
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signal ‘READ ADR .S4-9" says that it is stable from time 4 to time 9, and may be
changing the rest of the cycle, ie. from time 1 to time 4. This may seem somewhat
unusual at first, but the cycle time of the circuit is 8 clock units long, and the assertion

specification is taken to be modulo the cycle time.

Considering interconnection delays on incomplete designs presents some interesting
problems. If the actual wire delays are known for the signals in the circuit, they can be
used to do the analysis. If not, the Timing Verifier will use a default wire delay, unless
the designer specifies wire delays for specific signals. The minimum/maximum default
wire delay pair of 0.0/2.0 nsec was used for all of the wires in this example, except for
the address lines on the register file, where the designer specified that it could be

anywhere from 0.0 to 6.0 nsec.

Figure 3-10 exhibits the summary output listing generated by the Timing Verifier,
showing the values of the signals over the cycle time of the circuit. For example, the
first entry says that the address lines “ADR<0:3>" are stable at the beéinning of the cycle,
and that they start changing 0.5 nsec into the cycle. They then go stable 5.5 nsec into the
cycle, and stay stable until 25.5 nsec into the cycle. They are then changing from 25.5

nsec to 30.5 nsec, after which point they stay stable for the rest of the cycle.

Figure 3-11 contains the set-up and hold time errors which were detected by the
Timing Verifier. The first message states that the “SETUP HOLD CHK” primitive
specified a set-up time interval of 3.5 nsec, followed by a hold time of 1.0 nsec, and that

the set-up time was violated. The next two lines give the values seen by the "SETUP
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HOLD CHK” primitive on the data and clock inputs. They show the data not
becoming stable until 11.5 nsec into the cycle, and the clock starting to rise 11.5 nsec into
the cycle. Thus, the set-up time interval specified was missed by the full 3.5 nsec. The
next error message shows that the set-up time interval on the output register was
violated. The data didn’t go stable until 47.5 nsec into the cycle and the clock starts
rising at 49.0 nsec, thereby missing the specified set-up time interval of 2.5 nsec by 1.0

nsec.

Valves of all signals

ADR<O:3) . $:0.0, €:0.S, S:5.5, C:25.5, §:30.5
.PO-4 . R:0.0, 1:1.8, P:24. ©, 0:26. é R:49.8 (oosstaat velsme)

& po-3 8:0.0, R:1i.5, 1:13.8, F:17.8, 0:19.8 (coasioel value)

CK .P4-8 . . F:0.0, 0:1.0, R:24.0, 1:26.0, F:49.0 (oonsteal valwe)

OUTFUTC@:31> . $:6.0, C:8.5, S:7.5

RANCO:515. S:@.8, C:5.0, S:26.5, C:30.0, S:45.5

READ ADK .S4-90:3>. S:@.0, €:6.3, §:25.0'

REG C1X . Ro.0, L:1.8, Fi24.e, ©:26.0, R:49.0

W DATA so—6<o:n>. :8.8, C:37.

WE 0:0.8, R:11.5, 1:13.5, F:17.8, ©:19.8

WRITE .S0°6 $:6.8, C:37.5

WMITE ADR .S0-6<@:3> S:0.0, C:37.5

Figure 3-10

Timing Verifier output showing values of signals
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Setup, lloid sad Misimum Peise Width errors ....

Setup time error; Setwp Time = 3.5, Hold Tiwe = 1.0

cx lﬁPIIT = WE (+0.0) 0:0.6, R:11.5, 1:15.5, F:17.8, 0:21.8

DATA INPUT = ADR (+6.6) §:0.0, C:0.5, S:11.5, C:25.5, S:36.5

Setwp tiae error; Setup Tiwe = 2.5, Bold Time = 1.5

CK_INPUT = REG CLK (+0.0) R:06.0, 1:3.8, F:24.0, 0:28.0, R:49.0

DATA INFUT = RAN (+0.0) S:8.8, C:5.0, S:22.5, €:38.0, S:47.5
Figure 3-11

Set-up and hold time errors found by Timing Verifier.

3.3 PROCESSOR DESIGN TIMING VERIFICATION

The SCALD Timing Verifier has been used in the design of the S-1 Mark 11A
processor [SP79]. This exercise has served to validate the utility of the described
approach to timing verification, and has also provided performance statistics. The Mark
IIA is a highly pipelined processor which is designed to issue a new instruction every 50
nsec. The machine has a vector instruction unit which is being designed to process
vector operands at a pipeline rate of one every 25 nsec. The design rules employed by

the Timing Verifier in the examination of the Mark IIA design are:
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® The overall circuit cycle time was specified to be 50 nsec. Ma jor parts of the

design operate at a 25 nsec cycle time.

® The minimum/maximum default interconnection delay pair was 0.0/2.0 nsec,
and was used except for those signals for which the designer specified a
different range. The actual interconnection delays for the Mark IIA design
based on the transmission line properties have not yet been calculated via
detailed simulation, and as such, cannot be checked. Refined rules for future
designs could take into account the number of loads on a run, and the size of
the different loads. It is easy to vary the rule that is used, but more difficult to
find a single rule which works well in practice in all instances. The other
constraint is that it is convenient to the point of necessity to have a rule which
is easy for the designer to use in estimating the delay while doing the design.
A rule which only slightly improves the accuracy of the delay, but which is

difficult for the designer to readily employ, is clearly not worthwhile.

® The precision clocks are assumed to have a skew of +1.0 to -1.0 nsec from the
times specified, and the non-precision clocks are assumed to have a skew of
+5.0 to -5.0 nsec. The implementated design will have a set of programmable

delay lines which will be used to trim the clocks’ skews to this specification.

® The propagation delay for the integrated circuits used are the minimum and

maximum delay specifications given by the manufacturer. Where a part is
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manufactured by a number of different companies, the worst-case delay

numbers, determined from the minimum and maximum values of the different

specifications from the various companies are used.

The next two sections will discuss the execution statistics derived and the

evaluation made as results of using the Timing Verifier to examine the S-1 Mark IIA

design.

3.3.1 Design Experience in Using the Timing Verifier

The basic approach used to validate the functioning of the Timing Verifier and
to assess its utility has been to extensively exercise it on the design of a high
performance digital processor, the S-1 Mark IIA. It has been used frequently to check
the design of this system for timing behavior as it has progressed toward
implementation. The approach taken has been to advance the design for about a day,
and then to enter the new design into the SCALD system, via the Stanford University
Drawing System (SUDS) [He72] running on the S-1 Mark I system operating in PDP-10
simulation mode. The design is then processed through the SCALD Macro Expander,
which checks the design for syntax errors and generates a file which represents the
expanded design. The expanded design is then read into the Timing Verifier, which

checks all of the timing constraints imposed on it.
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This daily introduction into the design effort of feedback about timing errors has
been exceedingly helpful. It has allowed possible timing errors to be corrected while the
associated design is fresh in the minds of the designers, and before a great deal of
additional logic is designed which depends on the timing properties of the logic already

designed.

A typical circuit from the S-1 Mark IIA design is shown in Figure 3-12. It
consists of a 36-bit arithmetic/logic unit with output latch, a 36-bit debugging/status
register with load-enable, and a function decoder that controls the function select input
to the arithmetic/logic unit. All of the inputs and outputs from this circuit contain
assertions which specify when they can change. This allows the timing of this circuit to
be checked, either by itself or with the rest of the design. Adding these stable assertions

to the interface signals greatly adds to the readability of the design, making its timing

features exceedingly clear.

The timing constraints that need to be checked by the Timing Verifier for the
circuit in Figure 3-12 are the set-up, hold, and minimum pulse width constraints on the
output latch of the arithmetic logic unit and the debugging/status register. In order to
do this the Timing Verifier has to calculate when the inputs to these functions can

change, relative to their clocks, and the width of the clocks.
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Figure 3-12

Typical arithmetic circuit in the S-1 Mark IIA design
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3.3.2 Execution Statistics of Timing Verifier

The basic execution statistics associated with running the Macro Expander on the
S-1 Mark I system [Sp78] (which has a throughput rate approximately equivalent to an
IBM 370/168) for a major portion of the Mark IIA design consisting of 6357 MSI
ECL—]OK‘ and ECL-100K chips are shown in Table 8-1; this portion contains
approximately 97,709 2-input gates-equivalent of logic and 1,803,136 l?its of memory.
These execution statistics are resolved into three portion; of this processing task. The
first part is that involved in reading the input files and building the data structures to
represent the design. Next, the Macro Expander does an expansion of the design to
generate a summary listing, and builds up a data structure which resolves all synomyms
between different signals; this is Pass 1. Finally, the Macro Expander expands the
design again, this time outputting the fully elaborated design for use by the Timing

Verifier or the SCALD Layout Program,; this is Pass 2.



MACRO EXPANSION EXECUTION STATISTICS

Reading input files and building data structures
Pass | of Macro Expansion
Pass 2 of Macro Expansion

TIMING VERIFIER EXECUTION STATISTICS

Reading input files and building data structures
Generating cross reference listings

Verifying circuit

Generating timing summary listing

Total for both Timing Verifier and Macro Expander:

Table 3-1
Execution statistics for 6357 chip design example

Elapsed Time,
minutes

1.92
8.42
6.18

16.52

4.45
0.72
6.75
0.22

12.14
28.66

The Macro Expander generates a design representation in terms of primitive

definitions which are built into the Timing Verifier. Table 3-2 gives a listing of the

primitive types generated for the circuit example processed by the Macro Expander.

There were a total of 22 primitive types used, and each type was used 376 times on the

average, for a total of 8282 primitives. This gives 1.3 primitives per chip in the design.

These chips are MSI components and RAMs which average about 20 gates per chip for

the logic, and 1K bits per RAM. The reason why so few primitives were used is because

the primitive types, such as registers ("REG RS”) and multiplexers ("8 MUX"), are

reasonably high-level ones, and each primitive represents an arbitrarily wide data path.
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For example, the average width of a primitive was 6.5 bits. If this symmetry had not
been exploited, then 53,833 rather than 8282 primitives would have been used to

represent the circuit.
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PRIMITIVE TYPE NUMBER GENERATED AVERAGE NUMBER
OF BITS WIDE

2 AND 374 6.1
2 CHG 438 1.7
2 MUX 288 72
2 OR 917 23
3 CHG 152 1.3
3 OR 430 25
4 CHG 6 78
4 MUX 83 109
4 OR 167 3.8
5 OR 241 1.3
8 CHG 112 40
8 MUX 51 6.8
BUF 1507 48
CHG 693 8.5
LATCH 209 6.5
LATCH RS 102 8.7
MIN PULSE WIDTH %1 1.0
REG 246 254
REG RS 21 8.
SETUP HOLD 1010 9.7
SETUP RISE HOLD FALL 343 17.7
XOR 531 2.0
8282 6.5
Table 3-2

Primitive definitions generated for 6357 chip example

The execution statistics for the Timing Verifier are shown in Table 3-1. The
Timing Verifier took 4.45 minutes reading in the output from the SCALD Macro
Expander, and then building up its data structures. It then generated cross reference

listings, which aid the designer in finding where signals are used within the design. The
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next step was the timing verification process itself. This required 6.75 minutes, or about
49 milliseconds per primitive. In doing this verification, 20,052 events were processed,
where an event was caused by an output being given a new vaiue, which in turn caused
all primitives which use that output value to be updated. An event then took 20

milliseconds to process. This verification was for a single case.

The amount of time required to analyze an additional case is proportional to the
number of events which have to be processed for that case. In general, only those
signals which are affected by the case analysis need to be recalculated. The Mark IIA
processor is a pipelined processor, in which every pipeline stage must take the same
amount of time to execute. It was found that case analysis was only rarely required for
that design. However, for some design styles, e.g. those in which variable length cycles

are used, case analysis is essential.

Table 3-3 gives the storage required for data structures used during the Timing
Verification. Representing the circuit description is the single largest part of this
requirement, representing 37.84.  The circuit description is comprised of a
characterization of each primitive used, with a description of which signals were passed
to each of its parameters. This is the main data structure used while the circuit is being
verified, and its average size is 260 bytes per primitive. The S-1 Mark I PASCAL
compiler doesn't pack its records, so all fields require four bytes, except characters and

booleans, which take one byte.
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STORAGE TYPE K BYTES % OF STORAGE

CIRCUIT DESCRIPTION 2149 3787
SIGNAL VALUES 1843 32.4%
SIGNAL NAMES 660 11.6%
STRINGS SPACE 600 106%
CALL LIST ARRAY 389 6.9%2
MISCELLANEOUS 41 0.7%
5684 100.02
Table 3-3

Storage required by Timing Verifier for 6357 chip example

The next largest part of the storage requirement is for the storage of signal values.
A linked list is stored for each signal in the system representing its value. For the
current example, there were 33,152 of these value lists stored, each of which had a base
record followed by an average of 2.97 value records. The average amount of memory
needed to store the value of a given signal was then 56 bytes. The storage area for
keeping track of signal names is used to poin} to the value definition for each bit of a
signal vector, and to record which primitives define and use a given signal; it required
11.6% of the total storage used. The string space, which stores the text strings used by
the other data structures, accounts for 10.6% of the storage space. The “CALL LIST
ARRAY?” describes which primitives need to be reevaluated when a given bit of a signal
is updated, and accounts for 6.9% of the storage space. The “MISCELLANEOUS”
category represents a number of minor data structures used within the Timing Verifier,
which represent 0.7 of the storage. The Timing Verifier program consists of 4700 lines

of PASCAL code and requires 214K bytes of memory when loaded with run-time
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support.

In general, a compiler that packed the records to take up minimum space would
permit a significant reduction in Timing Verifier storage requirements. Also, additional -
programming to optimize the data structure for space could result in a non-negligible
storage saving. The approach taken for this research was to get a system up and
running relatively quickly, to evaluate the basic concepts of this approach, and not to try
and produce an optimized implementation for use in a production environment. Even
so, this system has been sufficiently efficient and powerful to be used extensively in the

design of the S-1 Mark IIA processor.

-85~



Chapter IV

CONCLUSIONS AND FUTURE RESEARCH

4.1 CONTRIBUTIONS

This thesis has developed an algorithm and associated implementation that:

® Verifies all of the timing constraints in synchronous sequential circuits,

including those containing value-dependent timing.

® Verifies timing constraints in these circuits as the design proceeds, without the
need for microcode or diagnostic programs, by doing most of the verification in

a value-independent fashion.



® Allows large digital logic circuits to be conveniently verified in sections through

the use of assertions on interface signals.

Many large digital circuits designed today are synchronous sequential digital
systems. Previous approaches used to detect timing errors in these designs have been
unable to handle the portion of circuits for which the timing is a function of the values
of the control signals (eg., path-searching systems), or have generally been necessarily

incomplete in their testing for all possible timing errors (eg., gate-level logic simulation.)

Path-searching systems search for the longest (or most critical) path between two
registers or latches. These systems have the fundamental limitation that they cannot
simulate the portions of the circuit which need to know the value behavior of some of
the signals in order to determine the timing of the circuit. Therefore, the handling of
clocks used in unusual ways, such as driving the select line of a multiplexer, or the
treating of circuits requiring case analysis tend to result in large numbers of spurious
error messages being generated. Some of these systems generate so many irrelevant error

messages that they have been found to be inconvenient to use.

Gate-level logic simulation simulates a digital logic system, taking into account the
timing properties of the components. Simulation is generally an inefficient way to check
for timing errors, because of the need to simulate a large number of cycles of the
operation of the circuit in order to test all of the different state transitions which must be
checked; only by doing so can the designer be certain that all of the worst-case paths

through the design have been tested. Such logic simulators are also inconvenient to use,
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because the complete value behavior of each signal in the design needs to be available,
whereas to check only the timing behavior typically requires much less information.
This additional information required to simulate a design comes in the form of
microcode and diagnostic programs and data patterns to drive signals not defined by the
circuit; these are normally laborious to generate. It is particularly inconvenient to
generate and update such data sets on many occasions, as the design progresses, which in
turn is necessary to allow timing constraints to be verified as the design evolves. With
Timing Verifier usage, it is convenient to check the design on a regular, frequent basis,

so that timing errors can be found as soon as they occur.

This thesis has developed and evaluated in realistic use an algorithm to verify all
of the logic level timing constraints in the design of synchronous sequential digital
systems, in a way that eliminates the basic problems of previously available methods.
This algorithm is computationally efficient, requiring an amount of time per case to be
analysed of the same order as what a logic simulator would require to simulate only one
micro-cycle of the circuit. It is also convenient to use and eliminates the need to generate
microcode, diagnostics, and data patterns to drive signals not yet generated, by verifying
most of the design in a value-independent fashion. Moreover, it allows a design to be
conveniently checked for timing errors as it proceeds, and in a highly modular fashion.
A Timing Verifier has been implemented using this algorithm and used in the design of
a high performance pipelined processor, the S-1 Mark IIA. Extensive use of the Timing
Verifier in the design of this processor has shown it to be a convenient and highly

effective tool.



The early detection of timing errors in designs can result in a significant reduction
in the design time required to make a digital logic system run at a given speed, in
addition to supporting creation of faster-running implementations of designs so realized.
In the design of large, high-speed digital logic systems, the handling of timing errors and
the optimization of the design for timing constitutes a large fraction of the total system
development time. The timing verification technique described here can substatially
improve the procedures which are currently being used, thereby making a significant

impact on how digital computing systems are designed and implemented.

4.2 FUTURE RESEARCH

There are a number of areas of research in this field to be addressed in the future.
These include verifying the timing of asynchronous circuits, taking into account different
rising and falling delays, consideration of correlations between different events within
the circuit, and evaluating a system that does probability-based analysis, instead of the.

minimum/maximum-based analysis used in the present work.
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4.2.1 Asynchronous, Self-Timed Circuits

One form of asynchronous circuit currently being discussed in the literature is the
"self-timed” circuit [Me80, Se79). These are circuits in which each module within a
design keeps track of how long it takes to compute a result. Modules then do
hand-shaking between themselves, keeping each other from proceeding until all of their
inputs are valid. One of the advantages of this type of design is that a central clock
doesn’t have to be distributed, which is a current problem in VLSI designs where only
one level of metallization is used (as clock lines carried significant distances in “slow”,
non-metallic lines develop unacceptably large skew. A number of manufacturers are
looking at multiple layers of metallization as another possibility) The verification
technique developed here could be used to determine the delay of the basic modules, to
determine how much of a delay needs to be inserted in the circuit which specifies when
the module is “done”. Checking the hand-shaking logic between the different modules is

a functional verification correctness-checking problem which is beyound the scope of

this thesis.
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4.2.2 Different Rising and Falling Delays

When designing with an implementation technology such as nMOS, in which
there are greatly differing rising and falling delays, it is overly pessimistic to just use the
longer of the two delays, as is done in the timing verification technique developed here.
The fundamental problem is that, except for clock circuitry, the Timing Verifier doesn’t
know the value of a given signal, and therefore doesn’t know whether to use the rising
or falling delay value. Now, in all cases except for multiple inverting levels of logic,
merely using the maximum of the rising and falling delays is the correct choice. One
approach is to recognize muiltiple inverting levels of logic, and to automatically ad just
the delays specified for those gates to take into account the different rising and falling
delays. This approach would allow the Timing Verifier to continue checking the timing

in a value-independent fashion, while taking into account the different rising and falling

delays.
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4.2.3 Correlations Within Digital Systems

Another fimitation of the Timing Verifier is that it doesn’t consider possible
correlations in the circuit being checked. Figure 4-1 shows a circuit in which an
edge-triggered register is loaded from either its old output value or from some new input
value, depending on the value of its select line. This circuit also has a buffer on its
clock line which inserts a relatively large amount of skew into the register clock. The
minimum delay of the register and the multiplexer together are longer than the hold
time of the register, but the Timing Verifier checks the hold time on the register from
the end of the rising edge, and then calculates when the output of the register could be
changing, starting from the rising edge of the clock pulse. In doing this, the Timing
Verifier thinks that the input data to the register is changing during the hold time for
the register, and it generates a false error message. The problem is that the Timing
Verifier presently does all of its calculations in terms of absolute time values, and ignores
information about the relative timing of when the register is clocked and when the input
data can change. Thus there is a correlation between the two signals which are inputs
into the "SETUP HOLD CHK” primitive which the Timing Verifier should consider;

since it currently does not, it occasionally emits false timing errors in such circumstances.

Correlation-engendered false timing error tends to be a problem in counters, shift

registers, and other circuits in which there is feedback from the output of a register into
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its inputs. The approach which has been taken is to make the designer explicitly insert
a “fictitious” delay into the feedback path which is at least as long as the skew on the
clock signal. This delay is inserted with a text macro called “CORR” to make it clear
what the designer is trying to do. Figure 4-2 shows this delay inserted. It suppresses
generation of the false error message, while allowing other possible errors associated with
this circuit to be checked. This approach has worked out well in the S-1 Mark IIA
processor design, but puts a significant burden on the designer. It would be preferable if
a simple method could be devised to automatically solve this problem. A logic
simulation system called “DIGSIM” [Ma77a, Ma77b] has been implemented which keeps
track of the relation of different events to each other and which therefore handles this
type of situation correctly. The techniques used there could be incorporated into a
system based on the concepts developed in this thesis. The extra complexity and
memory required was determined to make this not feasible for the S-1 Mark IIA design

work, and was not implemented in the current version of the Timing Verifier.
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Example showing correlation problem with extra delay inserted

4.2.4 Probability-Based Analysis

The Timing Verifier does minimum/maximum-based analysis. This means that
all propagation delays are specified with a minimum and maximum possible value. The
design is then checked to see that it will always perform properly if all components

perform within their specified time ranges.
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Probability-based analysis allows a distribution to be specified for each
propagation delay. The design is then checked to see that all of the paths in it are within
their required limits with a specified level of probability. The idea is that there is a low
probability of all of the components along a given path having either of their extreme
values. The "DIGSIM” logic simulator does this type of analysis and assumes that all
the components’ timing characteristics have normal distributions [Ma77a, Ma77b]l The
type of analysis the timing verification should -use depends on the technology being
studied and the design techniques a given design team wishes to use. For example, if all
of the components along a given path come from that same production run, then their
delays may be quite highly correlated, and the probability-based analysis may therefore
indicate that a circuit built with them will work with a probability that will be much
higher (or lower) than will be found in the real production environment. The problem
here is that the probability-based analysis assumed that the delays between the different
components  were uncorrelated. Another problem with the probability-based analysis
arises when the manufacturer starts testing the timing properties of the components and
sorting them into faster and slower groups. All of the fast components may be sold to
one customer, spoiling an orginal normal distribution for the rest of the customers.
Another problem is that the actual distribution of delays for a given component may
vary significantly from manufacturer to manufacturer, and even from month to month
from the same one. All the manufacturer guarantees is the minimum and maximum
timing specifications, which are easy to measure. The present approach may therefore

be the best one in such circumstances.



For those technologies and environments in which probability-based design is
appropriate, an equivalent of Timing Verifier capability is nonetheless needed. Such a
Timing Verifier could keep track of means and variances, rather than minimum and

maximum values.
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